Q1.

6 (a) A student is provided with a freshly prepared sample of a radioactive material and the count rate C from the source is found to vary with time t as shown in Fig. 6.1(a).

Use

Fig. 6.1(a)

Fig. 6.1(b)

A second similar sample of the radioactive material is then prepared and the student repeats the experiment, but with the sample at a higher temperature. The variation with time of the count rate for the second sample is shown in Fig. 6.1(b).

State the evidence that is provided by these two experiments for

(i)	the random	nature o	f radioactive	decay
w	the falldoni	nature o	I lauloactive	uecay,

e

(ii) the spontaneous nature of radioactive decay.

[2]

(b)		e radioactive source in (a) is an isotope of radon ($^{220}_{86}$ Rn) that emits α -radiation to ome polonium (Po).	
	(i)	State the number of neutrons in one nucleus of radon-220.	
		number =[1]	
	(ii)	Write down a nuclear equation to represent the radioactive decay of a nucleus of radon.	
		$^{220}_{86}$ Rn \rightarrow Po +	

Q2.

8 Fig. 8.1 shows the position of Neptunium-231 $\binom{231}{93}$ Np) on a diagram in which nucleon number (mass number) A is plotted against proton number (atomic number) Z.

Fig. 8.1

- (a) Neptunium-231 decays by the emission of an α-particle to form protactinium.
 On Fig. 8.1, mark with the symbol Pa the position of the isotope of protactinium produced in this decay.
- (b) Plutonium-243 ($^{243}_{94}$ Pu) decays by the emission of a β -particle (an electron). On Fig. 8.1, show this decay by labelling the position of Plutonium-243 as Pu and the position of the daughter product as D. [2]

Q3.

Q4.

7 The radioactive decay of a strontium (Sr) nucleus is represented in Fig. 7.1.

Fig. 7.1

(a)	State	e whether Fig. 7.1 represents α-decay, β-decay or γ-decay.	
		[1]	
(b)		type of radioactive decay cannot be represented on Fig. 7.1. lify this decay and explain why it cannot be represented.	
		[2]	
Q5.		ı	
Q 3.			
7		anium-236 ($^{236}_{92}$ U) and Uranium-237 ($^{237}_{92}$ U) are both radioactive. anium-236 is an $lpha$ -emitter and Uranium-237 is a eta -emitter.	ε
	(a)	Distinguish between an $\alpha\text{-particle}$ and a $\beta\text{-particle}$	

(b) The grid of Fig. 7.1 shows some proton numbers *Z* on the *x*-axis and the number *N* of neutrons in the nucleus on the *y*-axis.

The α -decay of Uranium-236 ($^{236}_{92}$ U) is represented on the grid. This decay produces a nucleus of thorium (Th).

For Examine Use

(i) Write down the nuclear equation for this α -decay.

.....[2]

- (ii) On Fig. 7.1, mark the position for a nucleus of
 - 1. Uranium-237 (mark this position with the letter U),
 - 2. Neptunium, the nucleus produced by the β -decay of Uranium-237 (mark this position with the letters Np). [2]

Q6.

8	The	spontaneous and random decay of a radioactive substance involves the emission of	-				
		her $lpha$ -radiation or eta -radiation and/or γ -radiation.					
	(a)	Explain what is meant by <i>spontaneous</i> decay.					
	1-7						
		[2]					
	(b)	State the type of emission one in each case that					
	(D)	State the type of emission, one in each case, that					
		(i) is not affected by electric and magnetic fields,					
		[1]					
		(ii) produces the greatest density of ionisation in a medium,					
		(ii) produces the greatest density of formsation in a medicin,					
		[1]					
		(iii) does not directly result in a change in the proton number of the nucleus,					
		[1]					
(iv)	ha	s a range of energies, rather than discrete values.					
		[1]					
Q7.							
7	One	e of the isotopes of uranium is uranium-238 ($^{238}_{92}$ U).	-				
	(a)	State what is meant by <i>isotopes</i> .					
		[2]					
	(L)	For a musicus of unanium 220 state					
	(a)	For a nucleus of uranium-238, state					
		(i) the number of protons,					
		number =[1]					
		SUPPLICATION SHOWS AND SHOULD					
		(ii) the number of neutrons.					
		number =[1]					

(c)	A u	ranium-238 nucleus has a radius of 8.9 × 10 ⁻¹⁵ m.	
	Cal	culate, for a uranium-238 nucleus,	
	(i)	its mass,	
	(ii)	mass = kg [2] its mean density.	
		density =kg m ⁻³ [2]	
(d)	U	ne density of a lump of uranium is 1.9 × 10 ⁴ kgm ⁻³ . sing your answer to (c)(ii), suggest what can be inferred about the structure of om.	
Q8.			

7	(a)	The radioactive decay of some nuclei gives rise to the emission of $\alpha\text{-particles}.$ State				
		(i)	what is meant by an α -particle,			
			[1]			
		(ii)	two properties of α -particles.			
			1			
			2			
			[2]			
	(b)		possible nuclear reaction involves the bombardment of a stationary nitrogen-14 leus by an $lpha$ -particle to form oxygen-17 and another particle.			
		(i)	Complete the nuclear equation for this reaction.			
			$^{14}_{7}$ N + $^{}_{}$ $^{\alpha}$ \rightarrow $^{17}_{8}$ O +			
(ii	tl	nat d	otal mass-energy of the nitrogen-14 nucleus and the $lpha$ -particle is less than of the particles resulting from the reaction. This mass-energy difference MeV.			
	1	. Su	ggest how it is possible for mass-energy to be conserved in this reaction.			
			[1]			
	2	. Ca	Iculate the speed of an $lpha$ -particle having kinetic energy of 1.1 MeV.			
			speed = m s ⁻¹ [4]			
			anasas			

7	at	mospl	operty of α -particles is that they produce a high density of ionisation of air at heric pressure. In this ionisation process, a neutral atom becomes an ion pair. The is a positively-charged particle and an electron.
	(a) Sta	ite
		(i)	what is meant by an α-particle,
			[1]
		(ii)	an approximate value for the range of $lpha$ -particles in air at atmospheric pressure.
			range =cm [1]
1	(b)	The α	energy required to produce an ion pair in air at atmospheric pressure is 31 eV. -particle has an initial kinetic energy of 8.5 × 10 ⁻¹³ J.
		(i)	Show that 8.5 × 10 ⁻¹³ J is equivalent to 5.3 MeV.
			[1]
	(ii)		culate, to two significant figures, the number of ion pairs produced as the article is stopped in air at atmospheric pressure.
			number =[2]

(i			your answer in (a)(ii) , estimate the average number of ion pairs produced it length of the track of the α -particle as it is brought to rest in air.	f xan U
			number per unit length =[2]	
Q10.				
7	(a)	The	spontaneous decay of polonium is shown by the nuclear equation	Ð
			$^{210}_{84}$ Po $\rightarrow ^{206}_{82}$ Pb + X.	
		(i)	State the composition of the nucleus of X.	
			[1]	
		(ii)	The nuclei X are emitted as radiation. State two properties of this radiation.	
			1	
			2	
			[2]	
(b)		ad (P	of the polonium (Po) nucleus is greater than the combined mass of the nuclei (b) and X. Use a conservation law to explain qualitatively how this decay is	
		,	[3]	
044				

Q11.

7	(a)	A nuclear reaction occurs when a uranium-235 nucleus absorbs a neutron. The reaction may be represented by the equation:	Fo Exami Us
		$^{235}_{92}$ U + $^{W}_{\chi}$ n \rightarrow $^{93}_{37}$ Rb + $^{141}_{Z}$ Cs + Y^{W}_{χ} n	
		State the number represented by the letter	
		W	
		X	
		Υ	
		Z[3]	
	(b)	The sum of the masses on the left-hand side of the equation in (a) is not the same as the sum of the masses on the right-hand side.	
		Explain why mass seems not to be conserved.	
		[2]	

Q12.

7			
		dioactive source emits $lpha$ -radiation and γ -radiation.	ε
	Ехр	lain how it may be shown that the source does not emit eta -radiation using	
	(a)	the absorption properties of the radiation,	
		[2]	
	(b)	the effects of a magnetic field on the radiation.	
		7.03	
		[2]	
13.		[2]	
_	(a)		
13. 7	(a)	Describe the two main results of the $lpha$ -particle scattering experiment.	Fi Ex an
_	(a)	Describe the two main results of the α -particle scattering experiment.	·
_	(a)	Describe the two main results of the $lpha$ -particle scattering experiment.	F Ex am
_	(a)	Describe the two main results of the $lpha$ -particle scattering experiment.	F Ex am
13. 7	(a)	Describe the two main results of the α-particle scattering experiment. result 1: result 2:	F Ex am
_		Describe the two main results of the α-particle scattering experiment. result 1: result 2:	F Ex am
_		Describe the two main results of the α-particle scattering experiment. result 1: result 2:	F Ex am
_		Describe the two main results of the α-particle scattering experiment. result 1: result 2: [3] Relate each of the results in (a) with the conclusions that were made about the nature of	F Ex am
_		Describe the two main results of the α-particle scattering experiment. result 1:	F Ex am
_		Describe the two main results of the α-particle scattering experiment. result 1: result 2: [3] Relate each of the results in (a) with the conclusions that were made about the nature of atoms. result 1:	F Ex am
_		Describe the two main results of the α-particle scattering experiment. result 1:	F Ex am

Q14.

7			um nucleus ^{∠¡u} Po is reaction for this decay	radioactive and decays with the emission of an $lpha$ -particle. T y is given by	he .
				$^{210}_{84}$ Po $\rightarrow {}^{W}_{X}$ Q + ${}^{Y}_{Z}\alpha$.	300
	(a)	(i)	State the values of	<i>W</i>	
				X	
				Υ	
				Z	[2]
		(ii)	Explain why mass se	eems not to be conserved in the reaction.	
	(b)	The	reaction is spontane	ous. Explain the meaning of <i>spontaneous</i> .	[2]
	()	100000		э	2000
					[4]
					Lil
Q15.					
7	(a)	Two	isotopes of uranium a	are uranium-235 ($^{235}_{92}$ U) and uranium-238 ($^{238}_{92}$ U).	For Examiner's
		(i)	Describe in detail an	atom of uranium-235.	Use
				[4]	
		(ii)	With reference to the	two forms of uranium, explain the term isotopes.	

(b)	Whe	When a uranium-235 nucleus absorbs a neutron, the following reaction may occur:				
		$^{235}_{97}U + ^{W}_{Y}n \rightarrow ^{148}_{57}La + ^{Z}_{Y}Q + 3^{W}_{Y}n$				
	(i)	Determine the values of Y and Z.				
	1.7	Y=				
		Z =	[2]			
	(ii)	Explain why the sum of the masses of the uranium nucleus and of the neutron d not equal the total mass of the products of the reaction.	oes			
			[2]			
Q16.						
8	A n	ucleus of an atom of francium (Fr) contains 87 protons and 133 neutrons.				
	(a)	Write down the notation for this nuclide.				
		 Fr				
			[2]			
	(b)	The nucleus decays by the emission of an $\alpha\text{-particle}$ to become a nucleus astatine (At).	of			
		Write down a nuclear equation to represent this decay.	[2]			

Q17.

6	Or	ne iso	tope of iron may be represented by the symbol	Use
			⁵⁶ Fe.	
	(a)) Sta	te, for one nucleus of this isotope,	
		(i)	the number of protons,	
			number =	
		(ii)	the number of neutrons.	
			number =[2]	
b)	The 5.7	e nuc ×10⁻	cleus of this isotope of iron may be assumed to be a sphere of radius ¹⁵ m.	
	Cal	culate	e, for one such nucleus,	
	(i)	the	mass,	
	(ii)	the	mass =kg	
			den sity = kg m ⁻³ [4]	

(c)			ball is found to have a density of 7900 kgm ⁻³ . By reference to your answer in suggest what can be inferred about the structure of an atom of iron.	
			[2]	
	•••		,	
Q18.				
7	The	e α- p	article scattering experiment provided evidence for the existence of a nuclear atom.	1
	(a)	Sta	te what could be deduced from the fact that	Exa
		(i)	most $\alpha\text{-particles}$ were deviated through angles of less than 10°,	
			[2]	
		(ii)	a very small proportion of the $\alpha\text{-particles}$ was deviated through angles greater than 90°.	
			[2]	

Q19.

7	(a)		dence for the nuclear atom was provided by the α-particle scattering experiment. te the results of this experiment.
			[2]
	(b)	Giv	e estimates for the diameter of
		(i)	an atom,
			[1]
		(ii)	a nucleus.
			[1]

Q20.

8 Thoron is a radioactive gas. The variation with time t of the detected count rate C from a sample of the gas is shown in Fig. 8.1.

Fig. 8.1

Rad	lioac	tive decay is said to be a random and spontaneous process.	
(a)	Ехр	lain, by reference to radioactive decay, what is meant by a random process.	
		[2]	
(b)	Stat	te the feature of Fig. 8.1 which indicates that the process is	
	(i)	a decay process,	
	(ii)	random.	
		[1]	
The	vari	ation with time of the count rate for this second sample is determined.	For Examini Use
dec	ay is	a spontaneous process.	
		[1]	
	(a) (b) A s The	(a) Exp	(i) a decay process, (ii) a decay process, (iii) random. [1] A second similar sample of thoron is prepared but it is at a much higher temperature. The variation with time of the count rate for this second sample is determined. State the feature of the decay curves for the two samples that suggests that radioactive decay is a spontaneous process.

Q21.

An α-particle A approaches and passes by a stationary gold nucleus N. The path is illustrated in Fig. 7.1. Ex an in er Use α-particle B • α-particle A Fig. 7.1 (a) On Fig. 7.1, mark the angle of deviation D of this α -particle as a result of passing the nucleus N. [1] (b) A second α -particle B has the same initial direction and energy as α -particle A. On Fig. 7.1, complete the path of α -particle B as it approaches and passes by the nucleus N. [2] (c) State what can be inferred about atoms from the observation that very few α -particles experience large deviations. (d) The nucleus N could be one of several different isotopes of gold. Suggest, with an explanation, whether different isotopes of gold would give rise to different deviations of a particular α -particle.

Q22.

7	Tungsten-184 ($^{184}_{74}$ W) and tungsten-185 ($^{185}_{74}$ W) are two isotopes of tungsten.					
	Tung	gsten-184 is stable but tungsten-185 undergoes β -decay to form rhenium (Re).				
	(a)	Explain what is meant by isotopes.				
			[2]			
(b) Th	he β -decay of nuclei of tungsten-185 is spontaneous and random.				
	Sta	ate what is meant by				
	(i)	spontaneous decay,				
			[1]			
	(ii)	random decay.				
			[1]			
(c	Co	omplete the nuclear equation for the β -decay of a tungsten-185 nucleus.				
		$^{185}_{74}W \rightarrow \dots + \dots$	[2]			

Q23.

7	(a)		nium (U) has at least fourteen isotopes. Iain what is meant by <i>isotopes</i> .	Fo Exami
			[2]	
	(b)	One	possible nuclear reaction involving uranium is	
			$^{235}_{92}$ U + $^{1}_{0}$ n \rightarrow $^{141}_{56}$ Ba + $^{92}_{Z}$ Kr + x^{1}_{0} n + energy.	
		(i)	State three quantities that are conserved in a nuclear reaction.	
			1	
			2	
			3	
			[3]	
(ii)	Fo	r thi	s reaction, determine the ∨alue of	
	1.	Z,		
			Z =[1]
	2.	х.		
			x =[1]

Q24.

7 The results of the α-particle scattering experiment provided evidence for the existence small size of the nucleus.					
	(a)	Stat	te the result that provided evidence for		
		(i)	the small size of the nucleus, compared with the atom,		
			[2]		
		(ii)	the nucleus being charged and containing the majority of the mass of the atom.		
			[2]		
(b)	Sug	gest	articles in this experiment originated from the decay of a radioactive nuclide. two reasons why $\beta\text{-particles}$ from a radioactive source would be inappropriate ype of scattering experiment.	4 55 655	
	1				
	2				
		•••••	[2]		

Q25.

9	(a)	Ехр	lain what is meant by radioactive decay.	Ex
	(b)	(i)	State how the random nature of radioactive decay may be inferred from observations of the count rate.	
		(ii)	A radioactive source has a long half-life so that, over a period of several days, its rate of decay remains constant. State the effect, if any, of a rise in temperature on this decay rate.	
			[1]	
		(iii)	Suggest why some radioactive sources are found to contain traces of helium gas.	
Q26.				
7	(a)	Two		For
		Exp	01 D 20 D	mine Use
			[2]	
	(b)	(i)	3827 85 800 82 80 82 85 85 86 862 862	
			[1]	

Q27.

	(ii)	When a nucleus of uranium-235 absorbs a neutron, the following reaction may take place.
		$^{235}_{92}U + {}^{a}_{b}n \rightarrow {}^{141}_{x}Ba + {}_{36}^{V}Kr + 3 {}^{a}_{b}n$
		State the values of a, b, x and y.
		a =
		b =
		x =
		y =[3]
(c)	Stat	en the nucleus of $^{238}_{92}$ U absorbs a neutron, the nucleus decays, emitting an α -particle. The the proton number and nucleon number of the nucleus that is formed as a result ne emission of the α -particle.
		proton number =
		nucleon number =[2]
' .		
7 (:	a) Sta	ate the experimental observations that show radioactive decay is
	(i)	spontaneous, Examine Use
		[1]
	(ii)	random.

(b) On Fig. 7.1, complete the charge and mass of α -particles, β -particles and γ -radiation. Give example speeds of α -particles and γ -radiation emitted by a laboratory source.

	α-particle	β-particle	γ-radiation
charge			0
mass	4u		
speed		up to 0.99c	

Fig. 7.1

[3]

(c)	Explain	the process by wh	nich α-particl	es lose energy wh	en they pass through ai	r.
						[2]
Q28.						ı
6		izontal metal plates ed across the plates			∨acuum. A potential differ	ence V
				+V	٦	1
					metal plate	
	ı	adioactive source	<u> </u> 	_	d	
			l b	eam of α-particles	metal plate	
				0 V		
				Fig. 6.1		
	A horiz plates.	ontal beam of $lpha$ -pa	nticles from a	a radioactive source	e is made to pass betwe	en the
	A horizo	ontal beam of α-pa	rticles from a	ı radioactive source	is made to pass betwe	en the
		te and explain the e	effect on the o	leflection of the $lpha$ -p	articles for each of the fo	llowing
	(i)	The magnitude of	V is increase	d.		
						[1]
	(ii)	The separation d	of the plates i	s decreased.		

	(b)	Con	source of α -particles is replaced with a source of β -particles. npare, with a reason in each case, the effect of each of the following properties on deflections of α - and β -particles in a uniform electric field:	For Ex amin Use
		(i)	charge	
			[2]	
		(ii)	mass	
			ro1	
		(iii)	speed [2]	
		(,		
			[1]	
(c)			ectric field gives rise to an acceleration of the $\alpha\text{-particles}$ and the $\beta\text{-particles}$ ine the ratio	
			acceleration of the α -particles acceleration of the β -particles	
			acceleration of the p particles	
			ratio =[3]	
				1

Q29.

6 (a)	Describe the structure of an atom of the nuclide $^{235}_{92}$ U.	Fi Exam Us
	[2]	
(b)	The deflection of α -particles by a thin metal foil is investigated with the arrangement shown in Fig. 6.1. All the apparatus is enclosed in a vacuum.	
	$\alpha \text{ source} \qquad \qquad \text{vacuum} \qquad \text{detector of α-particles} $ $\text{path of deflected} $ $\alpha\text{-particles} $ Fig. 6.1	
	Fig. 0.1	
The	e detector of $lpha$ -particles, D, is moved around the path labelled WXY.	
(i)	Explain why the apparatus is enclosed in a vacuum.	
	[1]	
(ii)	State and explain the readings detected by D when it is moved along WXY.	

(c)		eam of α -particles produces a current of 1.5 pA. Calculate the number of α -particles second passing a point in the beam.	For Examir.	
			Use	
		number =s-1 [3]		
Q30.				
7	7 A nuclear reaction between two helium nuclei produces a second isotope of heliu protons and 13.8 MeV of energy. The reaction is represented by the following equation			
		${}_{2}^{3}$ He + ${}_{2}^{3}$ He \rightarrow He + 2 p + 13.8 MeV		
	(a)	Complete the nuclear equation. [2]		
	(b)	By reference to this reaction, explain the meaning of the term isotope.		
		TOTAL		
	(c)	State the quantities that are conserved in this nuclear reaction.		
	(0)	State the qualities that are conserved in this flucted reaction.		
		[2]		

	(d)	Rad	Radiation is produced in this nuclear reaction.			
		Stat	State			
		(i)	a possible type of radiation that may be produced,			
			[1]			
		(ii)	why the energy of this radiation is less than the 13.8 MeV given in the equation.			
			[1]			
	(e)		culate the minimum number of these reactions needed per second to produce power 0 W.			
			number = s ⁻¹ [2]			
Q31.						
6	(a)	β-radiation is emitted during the spontaneous radioactive decay of an unstable i		• [
		(i)	State the nature of a β-particle.	Đ		
			[1]	1		
		(ii)	State two properties of β-radiation.			
			1	8		
			2			
			[2]		
		(iii)	Explain the meaning of spontaneous radioactive decay.			
				0		
				1		

(b)) The following equation represents the decay of a nucleus of hydrogen-3 by the emiss of a β -particle.				
	Complete the equation.				
	$^{3}_{1}H \rightarrow \dots \qquad \beta$ [2]				
(c)	The β -particle is emitted with an energy of 5.7 × 10 3 eV.				
	Calculate the speed of the β-particle.				
	speed = ms ⁻¹ [3]				
(d)	A different isotope of hydrogen is hydrogen-2 (deuterium). Describe the similarities a differences between the atoms of hydrogen-2 and hydrogen-3.				
	[2]				
Q32.					

7 (a) An electric field is set up between two parallel metal plates in a vacuum. The deflection of α-particles as they pass between the plates is shown in Fig. 7.1.

Εx

Fig. 7.1

The electric field strength between the plates is reduced. The α -particles are replaced by β -particles. The deflection of β -particles is shown in Fig. 7.2.

The electric field strength between the plates is reduced. The α -particles are replaced by β -particles. The deflection of β -particles is shown in Fig. 7.2.

Fig. 7.2

(i) State one similarity of the electric fields shown in Fig. 7.1 and Fig. 7.2.

(ii)	of reducing this el	trength in Fig. 7.2 is less than that in Fig. 7.1. State two methods ectric field strength.	
	1		
	2	[2]	数 数
			1
		the properties of α -particles and β -particles, suggest three reasons ses in the deflections shown in Fig. 7.1 and Fig. 7.2.	Fo Exami
	1		Us
	3		
		[3]	
D)	α-particles is repres	icles is uranium-238. The nuclear reaction for the emission of ented by	2
		${}^{238}_{92}U \longrightarrow {}^{W}_{\chi}Q + {}^{Y}_{Z}\alpha.$	
	State the values of	<i>W</i>	
		X	
		Y	
		z	
		[2]	
c)	A source of β -particles is repres	cles is phosphorus-32. The nuclear reaction for the emission of ented by	
		$^{32}_{15}P \rightarrow {}^{A}_{B}R + {}^{C}_{D}\beta.$	
	State the values of	A	
		В	
		C	
		D[1]	